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1 Deriving van der Waal’s Equation: The Final Chapter

1.1 Combining accumulated approximations for the partition function

So far, we had our original partition function

Zrn =
1

Nn!

∫
· · ·
∫
RNn

n

e−β
∑

i,j ϕ
r(qi−qj) dm×Nn

3 (q1, . . . , qNn).

We replaced it with the discretized partition function

Z̃rn =
∑

ω∈{0,1}Bn

|ω|=Nn

e−βΦr
n(ω), Bn = Rn ∩ εZ3,

which is what we will prove results about. We also introduced the effective partition
function

Ẑrn =
∑
ρ∈Ω̃n

|ρ|=Nn/m3

en
3W (ρ)−βΦ̃r

n(ρ),

which approximates Z̃rn.
So far, our approximations have been:

• (Unproved heuristic):
Zrn ≈ Z̃rne[small]·n as n→∞.

•

log Z̃rn = log Ẑrn +O

(
n3m

ε2r

)
+ o(n3)

= n3 max
ρ

{
W (p)− β

n3
Φ̃r
n(ρ)

}
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3)
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= n3

[
Fβα(m,ε,r)

(
ε3

v

)
+�����on→∞(1) +

�
�

�
��

O

(
1

m3

)]
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3)

Recall that fγ(x) = H(x, 1− x) + γx2 and Fγ(x) is the concave envelope of fγ(x) for
0 ≤ x ≤ 1.

= n3

[
Fβα/ε3

(
ε3

v

)
+
�
����

O
( m
ε2r

)]
+ (other error terms)

= n3Fαβ/ε3

(
ε3

v

)
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3).

We want everything in terms of Nn, rather than in terms of the volume of the box. So
let’s write

1

Nn
log Ẑrn =

1

n3

n3

Nn
[above stuff]

=
( v
ε3

+ on→∞(1)
)

[above stuff]

=
( v
ε3

+ o(1)
)[
Fαβ/ε3

(
ε3

v

)
+O

(
logm

m3

)
+O

( m
ε2r

)
+ o(1)

]
.

1.2 Taking limits to find the asymptotic behavior of the partition func-
tion

Let n→∞. Then r →∞ and m→∞ (with m =
√
r). Then, we will let ε→ 0. We get

lim
r→∞

lim
n→∞

1

Nn
log Z̃rn =

v

ε3
Fαβ/ε3

(
ε3

v

)
.

What happens here as ε→ 0?
We need the following lemma (proven in Homework 3):

Lemma 1.1. Suppose f : [0,∞)→ R is continuous with concave envelope F : [0,∞)→ R.
Assume f(x)/x→ 0 as x→∞. Then g : [0,∞)→ R, defined by

g(v) =

{
v · f(1/v) v > 0

0 v = 0,

has concave envelope equal to {
v · F (1/v) v > 0

0 v = 0.
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We will apply this to fγ (making it flat to the right of the unit interval):

So the remaining expression above is the concave envelope of v
ε3
fαβ/ε3( ε

3

v ), which is
explicit. This is

=
v

ε3

[
−ε

3

v
log

ε3

v
−
(

1− ε3

v

)
log

(
1− ε3

v

)
+
αβ

ε3

(
ε3

v

)2
]

= log
v

ε3
−
( v
ε3
− 1
)

log

(
1− ε3

v

)
+
αβ

v

= log v − log ε3 +
( v
ε3
− 1
)(ε3

v
+O

(
ε6

v2

))
+
αβ

v

= log v − log ε3 + 1 +O

(
ε3

v

)
+
αβ

v
.

In our original formulas for Ẑrn and Z̃rn, we should have had a factor of (ε3)Nn to account
for the number of particles per box. Putting that in (and carrying it throughout the whole
calculation), we are left with

v

ε3
fαβ/ε3

(
ε3

v

)
= log v + 1 +

αβ

v
+O

(
ε3

v

)
.

This is a uniform limit as ε ↓ 0 for v bounded away from 0. Check that we also get
convergence of the derivatives in v and that we get the same convergence for the concave
envelopes. So

lim
r→∞

lim
n→∞

1

Nn
log Z̃rn = conc. env. of

(
log v + 1 +

αβ

v

)
︸ ︷︷ ︸

g(v)

.

3



1.3 Recovering van der Waal’s equation and Maxwell’s equal area cor-
rection

What does this have to do for the van der Waal’s equation? Maxwell’s equal area correction
is precisely what you get when you replace log v+1+ αβ

v by its concave envelope. Explicitly,
we get:

P =
∂

∂v
[T log partition function].

We have
∂

∂v

[
1

β
log v +

1

β
+

1

v

]
=

1

βv
− α

v2
,

so

v
(
P +

α

v2

)
=

1

β
= T.

That is, we get van der Waal’s equation,

v(P +
α

v2
) = NT.

In the case of non-concavity, how do we fix it?

P = ∂
∂v [T ·G(v)], so let’s graph g′ and G′, the derivative of the concave envelope.
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Inside this shaded region above, recall which ρs carried most of the mass in Ẑrn =∑
ρ exp(n3W (ρ)−βΦ̂r

n(ρ)). Our analysis told us this, i.e. which micro configurations carry
most of the mass in the canonical ensemble. This means that the best ω have regions of
high density and regions of low density:

That is, the substance separates into a high density region (liquid) and a low density
region (gas). For example, some of the water in a glass of water will evaporate into water
vapor. Thus, van der Waal’s equation correctly predicts the existence of a phase transition
between gas and liquids.
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